An Interrupted Vinylogous Iso-Nazarov Reaction: Cycloisomerization of Conjugated Trienones to Cyclopenta[b]furan Derivatives

Martín J. Riveira and Mirta P. Mischne.

J. Org. Chem., 2014, 79(17), pp. 8244-8254

(National University of Rosario, Sante Fe, Argentina)

A. Manos-Turvey,
Wipf Group Current Literature
October 11th, 2014

New Scaffolds via Cycloisomerisation

- The Mischne group is interested in synthesis of new carbo- and heteropolycyclic molecular scaffolds, through the use of efficient and innovative methodology
- This work resulted from an unexpected cyclopenta[b] furan product obtained from a Knoevenagel-type condensation, leading to a stereoselective annulation cascade
 - o reaction of 1,3-dicarbonyl substrate, dimedone, with an $\alpha,\beta,\Upsilon,\delta$ -unsaturated aldehyde

M.J. Riveira, C. Gayathri, A. Navarro-Vázquez, N.V. Tsarevsky, R.R. Gil, M.P. Mischne, *Org. Biomol. Chem.*, **2011**, *9*, 3170-3175 M.J. Riveira, M.P. Mischne, *Chem. Eur. J.*, **2012**, *18*, 2382-2388

New Biologically Active Scaffolds

 Cyclopenta[b]tetrahydrobenzofurans are of interest as they can have antileukemic, insecticidal and cytostatic biological properties

Aplysin

-hepatoprotective effect -anti-tumour activity, resensitising agent Rocaglamide

-insecticidal activity -anti-proliferative cancer activity Benzoprostacyclins

-active against pulmonary vascular and diseases

Iridoid glucosides

-cytotoxicity against cervical and gastric carcinomas

The cyclopenta[b]furan motif alone has also been shown to be of clinical significance

N. Ribeiro, F. Thuaud, C. Nebigil, L. Désaubry, *Bioorg. Med. Chem.*, **2012**, *20*, 1857-1864 N. Li, L. Di, W.-C. Gao, K.-J. Wang, L.-B. Zu, *J. Nat. Chem.*, **2012**, *75*, 1723-1728

New Scaffolds via Cycloisomerisation

Further experimental investigations revealed:

- o substituted dienals at the α and Υ -position (R¹ and R² resp.) result in cyclopenta[b] furanderivatives
- o unbranched dienals (R^1 and R^2 = H) give trienedione products, stable in solid form
- alternate dicarbonyl substrates are tolerated
- Suggested that steric effects may contribute to destabilisation of the expected Knoevenagel condensation open form product

M.J. Riveira, M.P. Mischne, Chem. Eur. J., 2012, 18, 2382-2388

Stalled Cycloisomerisation Products

M.J. Riveira, M.P. Mischne, Chem. Eur. J., 2012, 18, 2382-2388

Proposed Mechanism for Alternate Products

OHC

$$X \rightarrow OH$$
 $X \rightarrow OH$
 $X \rightarrow OH$

M.J. Riveira, M.P. Mischne, *Chem. Eur. J.*, **2012**, *18*, 2382-2388 A.F. Kluge, C.P. Lillya, *J. Org. Chem.*, **1977**, *36*, 1971-1988

The Nazarov Cyclisation

C. Santelli-Rouvier, M. Santelli, *Synthesis*, **1983**, 429-442 E.A. Braude, J.A. Coles, J. Chem. Soc., Abstracts, **1952**, 1430-143 D.N. Kursanov, Z.N. Parnes, I.I. Zaretskaya, I.N. Nazarov, *Chem. Sci*, **1953**, 103-107

The Iso-Nazarov Cyclisation

• Could electrophilic activation of the stable unsaturated 1,3-dicarbonyl substrates allow for cation rearrangement followed by intramolecular cation trapping *via* a related mechanism?

W.T. Spencer III, T. Vaidya, A.J. Frontier, *Eur. J. Org. Chem.*, **2013**, 3621-3633 G.R. Elia, R.F. Childs, G.S. Shaw, *Can. J. Chem.*, **1992**, 2065-2069 N.C. Baird, *Tetrahedron*, **1972**, 2355-2360

Reaction Condition Screening

catalyst (equiv)	solvent	<i>t</i> [h]	conv.b	yield
CSA (0.5)	CH_2Cl_2	8	95%	30%
TFA (0.5)	CH_2Cl_2	4	100%	56%
$BF_3 \cdot OEt_2(2)$	$CH_2Cl_2^{\ c}$	2	100%	80%
$PtCl_2$ (0.5)	CH_2Cl_2	6	30%	6%
$CuCl_2$ (0.5)	CH_2Cl_2	>6	30%	traces
$ZnCl_2$ (0.5)	CH_2Cl_2	4	100%	83%
$Ti(O^{i}Pr)_{4} (0.5)$	CH_2Cl_2	6	20%	traces
$AuCl_3$ (0.5)	CH_2Cl_2	3	100%	65%
$AlCl_3$ (0.5)	CH_2Cl_2	1	91%	67%
$FeCl_3$ (0.5)	CH_2Cl_2	4	100%	88%
, .	_			

Screening of FeCl₃ as Catalyst

catalyst (equiv)	solvent	<i>t</i> [h]	conv.b	yield
FeCl ₃ (0.5)	CH_2Cl_2	4	100%	88%
$FeCl_3(3)$	$CH_2Cl_2^c$	0.25	100%	85%
FeCl ₃ (0.25)	CH_2Cl_2	6	82%	50%
FeCl ₃ (0.25)	$CH_2Cl_2^d$	6	72%	39%
FeCl ₃ (0.05)	CH_2Cl_2	>50	77%	36%
FeCl ₃ (0.5)	THF	1	100%	60%
FeCl ₃ (0.5)	toluene	1	100%	73%
FeCl3.6H2O (0.5)	CH_2Cl_2	6	95%	70%

- o c = reaction carried out at rt
- o d = only distilled, not dried, CH₂Cl₂ was used

Substrate Scope

0.5 mmol substrate in CH₂Cl₂ (0.1 M) at reflux with FeCl₃ (0.5 eq)

substrate	time (h)	product	yield	
	3	H	80%	
	4	+ + +	85% (0.6:1)	
	4	H	80% (insep dias.)	
	4	H	80%	
O R	R = H, 7 R = OMe, 4 R = F, 3	H	R = H, 85% R = OMe, 85% R = F, 75%	

Substrate Scope and Limitations

0.5 mmol substrate in CH₂Cl₂ (0.1 M) at reflux with FeCl₃ (0.5 eq)

substrate

time (h)

product

yield

25%

unreactive:

decomposed:

Proposed Mechanism

Substrate Limitation?

ε-Branched Compound Reactivity

- The compounds that had undergone "spontaneous" cyclisation in initial testing were subjected to the actual reaction conditions, to give different tricyclic products
 - o greater efficiency with 1 eq of FeCl₃

Further Labeling Studies

Three alkyl-branched deuterated substrates were synthesised and products assessed

- ζ-D retention was quite low in the alternate cycloisomerisation, suggesting a new mechanism
 - o an elimination step was considered likely

New Mechanistic Insight

17

• The authors suggest that the ϵ -branched substrates can lead to a preference for the tertiary cyclopentenyl cation intermediate

Conclusions

- Successfully demonstrated an unusual cascade reaction leading to the formation of cyclopenta[b]furan derivatives in one pot
 - o good yields, mild conditions
 - restrictions in substrate reactivity
 - o potential for further scaffold expansion courtesy of "re-rearranged" product discovery
- The exact utility of this synthetic strategy on non-diketal substrates is of interest
 - o reach structures of greater similarity to the cyclopenta[b]tetrahydrobenzofurans?
- More detailed mechanistic studies are in the works
- Can these reactions be carried out asymmetrically?